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Proposition 0.1 (Exercise IV.8.1). The solution set to cos z = 2 is

{x+ iy ∈ C : x = 2πn, y = − log(2±
√

3), n ∈ Z}

Proof. First we reduce to a quadratic in eiz.

2 = cos z =
eiz + e−iz

2
=⇒ eiz + e−iz − 4 = 0 =⇒

(
eiz
)2 − 4eiz + 1 = 0

Then applying the quadratic formula,

eiz =
4±
√

12

2
= 2±

√
3

Let z = x+ iy, then

eiz = ei(x+iy) = e−y+ix = e−y(cosx+ i sinx)

Since eiz is real, sinx = 0, so x is an integer multiple of π. Thus cosx = ±1. Since 2 +
√

3
and 2−

√
3 are positive, we must have cosx = +1. Thus x is an integer multiple of 2π.

eiz = 2 +
√

3 =⇒ e−y = 2 +
√

3 =⇒ −y = log(2 +
√

3)

eiz = 2−
√

3 =⇒ e−y = 2−
√

3 =⇒ −y = log(2−
√

3)

Thus the solution set is

{x+ iy : x = 2πn, y = − log(2±
√

3), n ∈ Z}

Lemma 0.2 (Exercise IV.8.2, not assigned). Let z = x+ iy. Then

cos z = cosx cosh y − i sinx sinh y

sin z = sinx cosh y + i cosx sinh y
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Proposition 0.3 (Exercise IV.8.3). Let φ be the map z 7→ cos z. Let c ∈ C. The image of a
line Re z = c is a hyperbola with transverse axis in the real direction, except for degenerate
cases when sin c = 0 or cos c = 0. The image of a line Im z = c is an ellipse centered at the
origin, except for the degenerate case c = 0.

Proof. Fix c ∈ R. First we determine the image of the line Im z = c under cos z. When
c = 0, we take the image of the embedded real axis, which is the line segment [−1, 1]. When
c 6= 0, note that sinh c and cosh c are nonzero, so using the formula

cos(x+ ic) = u+ iv = cosx cosh c− i sinx sinh c

We notice that the real and imaginary parts u, v satisfy

u2

cosh2 c
+

v2

sinh2 c
=

(
cosx cosh c

cosh c

)2

+

(
− sinx sinh c

sinh c

)2

= cos2 x+ sin2 x = 1

so the image is an ellipse centered at the origin. It intersects the real axis at ± cosh c, and
intersects the imaginary axis at ± sinh c. Now we determine the image of the line Re z = c.
Applying the formula again,

cos(c+ iy) = u+ iv = cos c cosh y − i sin c sinh y

When sin c = 0, the image is contained in the real axis, and when cos c = 0, the image is
contained in the imaginary axis. When sin c 6= 0 and cos c 6= 0, we see that

u2

cos2 c
− v2

sin2 c
=

(
cos c cosh y

cos c

)2

−
(

sin c sinh y

sin c

)2

= cosh2 y − sinh2 y = 1

so the image is a hyperbola centered at the origin with the real axis as the transverse axis.
It intersects the real axis at ± cos c.

Proposition 0.4 (Exercise IV.13.3). Let G be the open set C \ [−1, 1]. There is a branch of√
z+1
z−1 in G.

Proof. Let φ : C → C be given by z 7→ z+1
z−1 . Then φ(1) = ∞, φ(0) = −1, and φ(−1) = 0,

so φ maps the extended real line onto itself (because φ is a fractional linear transformation
and preserves clircles). In particular φ maps the segment [−1, 1] onto the negative real axis
(−∞, 0]. We know that there is branch of log on the slit complex plane C\ (−∞, 0], so there
is a branch of log on φ(G). Then by the discussion in IV.13, there is a branch of φ1/2 in
G.

For exercises V.6.2 and following, I need the following lemma, which is Exercise V.6.1, which
was not assigned. I won’t mentioned the use of this lemma, I’ll just use the phrases “converges
uniformly” and “uniformly Cauchy” interchangeably.

Lemma 0.5 (Exercise V.6.1, not assigned). Let gn be a sequence of complex-valued functions.
The sequence converges uniformly on G if and only if it is uniformly Cauchy on G.
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Proof. First assume that gn converges uniformly to g on G. Let ε > 0. Then there exists
N ∈ N so that for all z ∈ G,

n ≥ N =⇒ |gn(z)− g(z)| < ε/2

Then if n,m ≥ N , we have both |gn(z) − g(z)| < ε/2 and |gm(z) − g(z)| < ε/2, so by the
triangle inequality,

n,m ≥ N =⇒ |gn(z)− gm(z)| ≤ |gn(z)− g(z)|+ |gm(z)− g(z)| < ε

so the sequence is uniformly Cauchy in G. Now suppose that gn is uniformly Cauchy in G.
Let ε > 0. Then there exists N ∈ N so that for z ∈ G,

n,m ≥ N =⇒ |gn(z)− gm(z)| < ε/2

For z ∈ G, define g(z) = limn→∞ gn(z). This limit always exists because gn(z) is a Cauchy
sequence for a fixed z. Now choose m ≥ N . Then

n ≥ N =⇒ |gn(z)− gm(z)| < ε

=⇒ gm(z)− ε < gn(z) < gm(z) + ε

=⇒ gm(z)− ε/2 ≤ lim
n→∞

gn(z) ≤ gm(z) + ε/2

=⇒ gm(z)− ε < g(z) < gm(z) + ε

=⇒ |gm(z)− g(z)| < ε

Since m was arbitrary, this says that gn converges uniformly to g.

Lemma 0.6 (for Exercise V.6.2). Let gn be a sequence of complex valued functions defined
on an open set G ⊂ C. Suppose that gn converges uniformly on open sets U1, . . . , Uk. Then
gn converges uniformly on

⋃
k Uk.

Proof. First consider the case of just two open sets U1, U2. Let ε > 0. By hypothesis, there
exists N1, N2 ∈ N so that

n,m ≥ N1 =⇒ |gn(z)− gm(z)| < ε, ∀z ∈ U1

n,m ≥ N2 =⇒ |gn(z)− gm(z)| < ε, ∀z ∈ U2

Let N = max(N1, N2). Then for z ∈ U1 ∪ U2, we have z ∈ U1 or z ∈ U2, so

n,m ≥ N =⇒ |gn(z)− gm(z)| < ε

By a straightforward induction, the result for k open sets follows.

Proposition 0.7 (Exercise V.6.2). Let gn be a sequence of complex valued functions defined
in an open set G ⊂ C. It converges locally uniformly in G if and only if it converges uniformly
on each compact subset of G.
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Proof. First suppose that gn converges locally uniformly in G. Let A be a compact subset of
G. By hypothesis, for each z ∈ G, there is an open neighborhood Uz on which gn converges
uniformly. The collection {Uz : z ∈ G} is an open cover of A. Since A is compact, there is a
finite subcover {Uzk}Nk=1. By the previous lemma, gn converges uniformly on

⋃
k Uzk , which

contains A. Thus gn converges uniformly on A.
Now suppose that gn converges uniformly on each compact subset of G. By openness

of G, there exists r > 0 so that Br(z) ⊂ G. Then Br/2(z) ⊂ Br(z) ⊂ G. Since Br/2(z)
is compact, gn converges uniformly on it by hypothesis. Then gn converges uniformly on
Br/2(z), which is an open neighborhood of z. Hence gn converges locally uniformly in G.

Proposition 0.8 (Exercise V.7.1). Suppose that
∑∞

n=0 |fn| converges locally uniformly in G.
Then

∑∞
n=0 fn converges locally uniformly in G.

Proof. Let z ∈ G and let ε > 0. By hypothesis, there exists a neighborhood U of z on which∑∞
n=0 |fn| converges uniformly. That is, there exists N ∈ N so that ∀z ∈ U we have

k ≥ m ≥ N =⇒

∣∣∣∣∣
k∑

n=0

|fn(z)| −
m∑

n=0

|fn(z)|

∣∣∣∣∣ < ε

We claim that
∑∞

n=0 fn converges uniformly on U as well. Assuming k ≥ m,∣∣∣∣∣
k∑

n=0

fn(z)−
m∑

n=0

fn(z)

∣∣∣∣∣ =

∣∣∣∣∣
k−m∑
n=0

fn(z)

∣∣∣∣∣ ≤
k−m∑
n=0

|fn(z)|

=
k∑

n=0

|fn(z)|−
m∑

n=0

|fn(z)| ≤

∣∣∣∣∣
k∑

n=0

|fn(z)| −
m∑

n=0

|fn(z)|

∣∣∣∣∣
Thus

k ≥ m ≥ N =⇒

∣∣∣∣∣
k∑

n=0

fn(z)−
m∑

n=0

fn(z)

∣∣∣∣∣ ≤
∣∣∣∣∣

k∑
n=0

|fn(z)| −
m∑

n=0

|fn(z)|

∣∣∣∣∣ < ε

Proposition 0.9 (Exercise V.7.2). The series
∑∞

n=0

(
z−1
z+1

)n
converges locally uniformly in

the half-plane Re z > 0. The sum is z+1
2

.

Proof. The series is undefined for z = −1, so we assume z 6= −1. By the result in V.7, a
geometric series

∑∞
n=0w

n converges locally uniformly to 1
1−w on |w| < 1. Thus our series

with w = z−1
z+1

converges locally uniformly on∣∣∣∣z − 1

z + 1

∣∣∣∣ < 1 ⇐⇒ |z − 1| < |z + 1| ⇐⇒ |x− 1 + iy| < |x+ 1 + iy|

⇐⇒
√

(x− 1)2 + y2 <
√

(x+ 1)2 + y2 ⇐⇒ (x− 1)2 < (x+ 1)2

⇐⇒ x2 − 2x+ 1 < x2 + 2x+ 1 ⇐⇒ −2x < 2x ⇐⇒ x > 0
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That is, the series converges locally uniformly for Re z > 0, and the sum is

1

1− z−1
z+1

=
z + 1

(z + 1)− (z − 1)
=
z + 1

2

Lemma 0.10 (for Exercise V.12.2). Let xn be a sequence of non-negative real numbers.
Then

lim sup
n→∞

(xn)n/(n−1) = lim sup
n→∞

xn

Proof. Let exp and log denote the real exponential and natural logarithm functions. Using
limit laws including the fact that log commutes with limits and products commute with
limits,

lim sup
n→∞

(xn)n/(n−1) = exp log lim sup
n→∞

(xn)n/(n−1) = exp lim sup
n→∞

log((xn)n/(n−1)

= exp lim sup
n→∞

((
n

n− 1

)
log xn

)
= exp

((
lim sup
n→∞

n

n− 1

)(
lim sup
n→∞

log xn

))
= exp lim sup

n→∞
log xn = exp log lim sup

n→∞
xn = lim sup

n→∞
xn

Proposition 0.11 (Exercise V.12.2). A power series
∑∞

n=0 anz
n and its termwise derivative∑∞

n=1 nanz
n−1 have the same radius of convergence.

Proof. By the Cauchy-Hadamard theorem, the radius R of convergence for the original power
series is

R =
1

lim supn→∞ |an|1/n

and the radius R̃ of convergence for the termwise derivative is

R̃ =
1

lim supn→∞ |nan|1/(n−1)

We claim that these two lim sup expressions are equal. We know that

lim
n→∞

n1/(n−1) = 1

so we have

lim sup
n→∞

|nan|1/(n−1 = lim sup
n→∞

n1/(n−1) lim sup
n→∞

|an|1/(n−1) = lim sup
n→∞

|an|1/(n−1)

Then by the above lemma we have

lim sup
n→∞

|an|1/(n−1) = lim sup
n→∞

(
|an|1/n

)n/(n−1)
= lim sup

n→∞
|an|1/n

Thus the two lim sup expressions are equal, so R = R̃.
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Lemma 0.12 (for Exericse V.14.1c).

lim
k→∞

(
1

k

)1/k!

= 1

Proof. First, we apply the exponential and logarithm to reduce the problem to computing
the limit inside the exponential.

lim
k→∞

(
1

k

)1/k!

= exp log lim
k→∞

(
1

k

)1/k!

= exp lim
k→∞

log

(
1

k

)1/k!

= exp lim
k→∞

(
1

k!
log

1

k

)
= exp

(
− lim

k→∞

log k

k!

)
Next observe that

log k < k =⇒ log k

k!
<

k

k!
=

1

(k − 1)!
=⇒ lim

k→∞

log k

k!
≤ lim

k→∞

1

(k − 1)!
= 0

Since the terms of log k
k

are positive, the limit must be precisely zero. Thus our original limit
is

lim
k→∞

(
1

k

)1/k!

= exp(−0) = 1

Lemma 0.13 (for Exercise V.14.1d).

lim
n→∞

(n!)1/n =∞

Proof. First we establish an inequality.

(n!)2 = (n)(n− 1) . . . , (1)(n)(n− 1) . . . (1) =
[
(n)(1)

][
(n− 1)(2)

]
. . .
[
(2)(n− 1)

][
(n)(1)

]
Each term (k + 1)(n− k) is greater than n. Therefore

(n!)2 ≥ nn =⇒ (n!)(1/n) ≥
√
n

Thus
lim
n→∞

(n!)(1/n) ≥ lim
n→∞

√
n =∞

(Exercise V.14.1)
(a) We apply the ratio test to find the radius of convergence for

∑∞
n=0

zn

n3 . The following
limit exists, so R = 1.

lim
n→∞

∣∣∣∣ n3

(n+ 1)3

∣∣∣∣ = 1
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(c) Consider the series
∑∞

n=1
zn!

n
. We can rewrite it as

∞∑
n=1

zn!

n
= z +

z2

2
+ 0z3 + 0z4 + 0z5 +

z6

3
+ . . . =

∞∑
n=1

anz
n

where

an =

{
1
k
∃k ∈ N, n = k!

0 ∀k ∈ N, n 6= k!

Then

|an|1/n =

{(
1
k

)(1/k!) ∃k ∈ N, n = k!

0 ∀k ∈ N, n 6= k!

Then using the above lemma we can compute

lim sup
n→∞

|an|1/n = lim sup
k→∞

(
1

k

)(1/k!)

= 1

Then by the Cauchy-Hadamard theorem, the radius of convergence is the reciprocal of this
limsup, so R = 1.

(d) Consider the series
∑∞

n=0(n!)zn!. Then we have

an =

{
n! ∃k ∈ N, n = k!

0 ∀k ∈ N, n 6= k!
=⇒ |an|1/n =

{
n!1/n ∃k ∈ N, n = k!

0 ∀k ∈ N, n 6= k!

Using the calculation from a previous lemma,

lim sup
n→∞

|an|1/n = lim sup
n→∞

(n!)1/n =∞

so the radius of convergence is zero.
(e) Consider the series

∑∞
n=1 n

nzn
2
. Then aft9er rewriting it to include zero terms,

∞∑
n=1

nnzn
2

= 11z1 + 0z2 + 0z3 + 22z2
2

+ 0z5 + . . .+ 33z3
2

+ . . .

we can formulate the nth term of this series as

an =

{
kk ∃k ∈ N, k2 = n

0 ∀k ∈ N, k2 6= n
=

{√
n
√
n ∃k ∈ N, k2 = n

0 ∀k ∈ N, k2 6= n

Then we take the lim sup

lim sup
n→∞

|an|1/n = lim sup
n→∞

(√
n
√
n
)1/n

= lim sup
n→∞

n1/(2
√
n)
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We can compute this as a limit:

lim
n→∞

n1/(2
√
n) = exp lim

n→∞
log n1/(2

√
n) = exp lim

n→∞

log n

2
√
n

= exp lim
n→∞

n−1

n−1/2
= exp lim

n→∞
n−1/2 = exp 0 = 1

Thus the radius of convergence is 1.

Proposition 0.14 (Exercise V.16.2). The power series

∞∑
n=1

n2zn

represents the function

f(z) =
−z(z + 1)

(z − 1)3

on the unit disk |z| < 1.

Proof. We know that the series
∑∞

n=0 z
n represents the function z 7→ 1

1−z on |z| < 1. Taking

the termwise derivative tells us that ∂
∂z

(
1

1−z

)
= 1

(1−z)2 is represented by
∑∞

n=1 nz
n−1 also on

|z| < 1. Multiplying by z on both sides of the “equality,” z
(1−z)2 is represented by

∑∞
n=1 nz

n

on |z| < 1. Taking another termwise derivative and then multiplying by z again gives that

z
∂

∂z

(
z

(1− z)2

)
=
−z(z + 1)

(z − 1)3

is represented by
∑∞

n=1 n
2zn on |z| < 1.

Proposition 0.15 (Exercise V.16.3, part one). Let k be a nonnegative integer. Then the
series

∞∑
n=0

(−1)n
(
z
2

)k+2n

n!(n+ k)!

has radius of convergence ∞.

Proof. Let bn be the nth term of the above series. Then

∣∣∣∣bn+1

bn

∣∣∣∣ =

(
( z
2)

k+2n+2

(n+1)!(n+1+k)!

)
(

( z
2)

k+2n

n!(n+k)!

) =

(
z
2

)2
(n+ 1)(n+ 1 + k)

so

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = 0

for al z, k. Thus by the ratio test, the series converges absolutely for all z, so the radius of
convergence is infinite.

8


