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Proposition 0.1 (Exercise IV.8.1). The solution set to cosz = 2 is
{z+iyeC:x=2mn,y=—log(2+V3),n e Z}
Proof. First we reduce to a quadratic in e’

2200822% — P te P —4=0 — (eiz)2—4eiz+1:0

Then applying the quadratic formula,

L 4EV12
e = —— =243

Let z = x + 1y, then
e* = laty) — —ytiz _ e Y(cosx +isinx)

Since ¥ is real, sinz = 0, so « is an integer multiple of 7. Thus cosz = +1. Since 2 + /3
and 2 — v/3 are positive, we must have cosz = +1. Thus z is an integer multiple of 27.

¥ =24V3 = e ¥=24+V3 = _yzlog(2+\/§)
6iz22—\/§ — eiy:2_\/§ — —yIlOg<2—\/§)

Thus the solution set is

{x+iy:x=2mn,y=—1log(2+ V3),n e Z}

Lemma 0.2 (Exercise IV.8.2, not assigned). Let z = = +iy. Then

cos z = cos x coshy — isinz sinh y

sin z = sin x cosh y + 4 cos x sinh y



Proposition 0.3 (Exercise IV.8.3). Let ¢ be the map z + cos z. Let ¢ € C. The image of a
line Re z = ¢ is a hyperbola with transverse azis in the real direction, except for degenerate
cases when sinc = 0 or cosc = 0. The image of a line Im z = ¢ is an ellipse centered at the
origin, except for the degenerate case ¢ = 0.

Proof. Fix ¢ € R. First we determine the image of the line Im 2z = ¢ under cosz. When
¢ = 0, we take the image of the embedded real axis, which is the line segment [—1,1]. When
¢ # 0, note that sinh ¢ and cosh ¢ are nonzero, so using the formula

cos(x + ic) = u + iv = cos x cosh ¢ — isin z sinh ¢

We notice that the real and imaginary parts u, v satisfy

2 2 2 . . 2
u v cosx cosh ¢ —sinxsinhc 9 9
—— | +|——— ) =cos"z+sinx=1

cosh’c = sinh®c¢ cosh ¢ sinh ¢

so the image is an ellipse centered at the origin. It intersects the real axis at + cosh ¢, and
intersects the imaginary axis at +sinh c. Now we determine the image of the line Rez = c.
Applying the formula again,

cos(c+iy) = u+ v = cosccoshy — isincsinhy

When sinc = 0, the image is contained in the real axis, and when cosc = 0, the image is
contained in the imaginary axis. When sinc # 0 and cosc¢ # 0, we see that

2 L
u? v? cos ccosh y sin csinh y
cos2c  sin’c cosc sin ¢

2
= ) = cosh?y —sinh?y = 1

so the image is a hyperbola centered at the origin with the real axis as the transverse axis.
It intersects the real axis at + cosc. O

Proposition 0.4 (Exercise IV.13.3). Let G be the open set C\ [—1,1]. There is a branch of
\ /z—ﬂ n G.

Proof. Let ¢ : C — C be given by z % Then ¢(1) = oo, ¢(0) = —1, and ¢(—1) = 0,
so ¢ maps the extended real line onto itself (because ¢ is a fractional linear transformation
and preserves clircles). In particular ¢ maps the segment [—1, 1] onto the negative real axis
(—00,0]. We know that there is branch of log on the slit complex plane C\ (—o0, 0], so there
is a branch of log on ¢(G). Then by the discussion in IV.13, there is a branch of ¢'/2 in
G. ]

For exercises V.6.2 and following, I need the following lemma, which is Exercise V.6.1, which
was not assigned. I won’t mentioned the use of this lemma, I'll just use the phrases “converges
uniformly” and “uniformly Cauchy” interchangeably.

Lemma 0.5 (Exercise V.6.1, not assigned). Let g,, be a sequence of complex-valued functions.
The sequence converges uniformly on G if and only if it is uniformly Cauchy on G.



Proof. First assume that g, converges uniformly to g on GG. Let € > 0. Then there exists
N € N so that for all z € G,

n>N = |gn(2) = 9(2)| <¢/2

Then if n,m > N, we have both |g,(z) — g(2)| < €¢/2 and |gm(2) — g(2)| < €/2, so by the
triangle inequality,

n,m >N = |gu(2) = gm(2)] < |gn(2) — 9(2)] + |gm(2) — g(2)| < €

so the sequence is uniformly Cauchy in G. Now suppose that g, is uniformly Cauchy in G.
Let € > 0. Then there exists N € N so that for z € G,

n,m >N = |g.(2) — gm(2)| < €/2

For z € G, define g(z) = lim,,_,o g,(2). This limit always exists because g,(z) is a Cauchy
sequence for a fixed z. Now choose m > N. Then

n>N = |gn<z)_gm( )‘<6

= gm(2) — € < gn(2) < gm(2) +€

= gm(2) —€/2 < hm gn( ) < gm(2) +¢€/2
(2) —

= gn(z e<g)<gm()+e
= |gm(2) —g(z)| < e

z

Since m was arbitrary, this says that g, converges uniformly to g. O]

Lemma 0.6 (for Exercise V.6.2). Let g, be a sequence of complex valued functions defined
on an open set G C C. Suppose that g, converges uniformly on open sets Uy, ..., Uy. Then
gn converges uniformly on | J, Ug.

Proof. First consider the case of just two open sets Uy, Us. Let € > 0. By hypothesis, there
exists N1, Ny € N so that

n,m >Ny = |gu(2) —gm(2)| <€, VzeU
n,m > Ny = |gn(2) — gm(2)| <€, Vze U,

Let N = max(Ny, N3). Then for z € U; U U,, we have z € U; or z € Uy, so
n,m =N = [ga(2) = gm(2)] <€
By a straightforward induction, the result for k& open sets follows. O

Proposition 0.7 (Exercise V.6.2). Let g, be a sequence of complex valued functions defined
in an open set G C C. It converges locally uniformly in G if and only if it converges uniformly
on each compact subset of G.



Proof. First suppose that g, converges locally uniformly in G. Let A be a compact subset of
G. By hypothesis, for each z € G, there is an open neighborhood U, on which g, converges
uniformly. The collection {U, : z € G} is an open cover of A. Since A is compact, there is a
finite subcover {U, }7,. By the previous lemma, g, converges uniformly on J, U,,, which
contains A. Thus g, converges uniformly on A.

Now suppose that g, converges uniformly on each compact subset of G. By openness
of G, there exists r > 0 so that B,(z) C G. Then B,»(2) C B.(z) C G. Since B,s(2)
is compact, g, converges uniformly on it by hypothesis. Then g, converges uniformly on
B, 2(z), which is an open neighborhood of z. Hence g,, converges locally uniformly in G. [

Proposition 0.8 (Exercise V.7.1). Suppose that >~ | fn| converges locally uniformly in G.
Then Y~ fn converges locally uniformly in G.

Proof. Let z € G and let € > 0. By hypothesis, there exists a neighborhood U of z on which
Yo o | fal converges uniformly. That is, there exists N € N so that Vz € U we have

PSRRI AC]

n=0

k>m>N — <€

We claim that ) 7, f, converges uniformly on U as well. Assuming k > m,

S A -3 L0 =Y LG < S 1)
S RS IR < S G - S G
Thus
E=m>N = | fulz) =Y fal2)| <D a2 = DI fal2)]| <€

]

Proposition 0.9 (Exercise V.7.2). The series Y~ (;—r%)n converges locally uniformly in
the half-plane Re z > 0. The sum is %1

Proof. The series is undefined for z = —1, so we assume z # —1. By the result in V.7, a
geometric series Y~ jw™ converges locally uniformly to ﬁ on |w| < 1. Thus our series
. s | .
with w = 25 converges locally uniformly on
z—1 . .
1 <l <<= |z-1|<|z+4]] <= |z —1+iy| < |z + 1+ y|
z

= V(@-124+ 2 <V(@+1)2+y? <= (-1’ < (z+1)
e 2 - r+1<a®+2r+1 & -2 <2 < >0



That is, the series converges locally uniformly for Re z > 0, and the sum is

1 z+1 z+1

1—2=  (z+1)—(z-1) 2

]

Lemma 0.10 (for Exercise V.12.2). Let x, be a sequence of non-negative real numbers.
Then
lim sup(z,,)" ™~ = lim sup z,
n—oo n—oo
Proof. Let exp and log denote the real exponential and natural logarithm functions. Using
limit laws including the fact that log commutes with limits and products commute with
limits,
lim sup(z,, )" ™~V = exp log lim sup(z,, )™ ™) = exp lim sup log((z, )"/ "~

n—oo n—oo n—o0

= exp lim sup ( (—) log mn) = exp ( (hm sup ) (hm sup log a:n) )

= exp lim sup log z,, = exploglimsup x,, = limsup x,,
n—oo n—oo n—oo

]

Proposition 0.11 (Exercise V.12.2). A power series Y~ a,z" and its termwise derivative
> oo nanz""t have the same radius of convergence.

Proof. By the Cauchy-Hadamard theorem, the radius R of convergence for the original power

series is 1

- lim sup,,_, o, |an|'/™

and the radius R of convergence for the termwise derivative is

~ 1
R

" lim SUp,, oo |RGR [/ (1)
We claim that these two lim sup expressions are equal. We know that

lim n'/1Y =1
n—oo

so we have

lim sup [na, |1 = limsup n* @Y lim sup |a, |~ = lim sup |a, |/

n—o0 n—oo n—o0 n—oo

Then by the above lemma we have

-1
lim sup |a,|Y ™Y = lim sup (|an|1/”)n/(n ) — lim sup |a, |*/"
n—00 n—00 n—r00
Thus the two lim sup expressions are equal, so R = R. O



Lemma 0.12 (for Exericse V.14.1c).

1 1/k!
i (z) -

Proof. First, we apply the exponential and logarithm to reduce the problem to computing
the limit inside the exponential.

' 1 1/k! ‘ 1 1/k! ' 1 1/k!
i (1) =ewiontin (1) =ow s )

. 1 1 . logk
R ARl Al W=

Next observe that

logk k 1 . logk )
logh <k = — = = lim —— < 1 -
0Bl = HOSRH T Gon el s gy =Y
Since the terms of % are positive, the limit must be precisely zero. Thus our original limit

1S

k—o0

1\ VR
lim (E) =exp(—0) =1

Lemma 0.13 (for Exercise V.14.1d).

lim (n!)Y™ = 0o
n—oo

Proof. First we establish an inequality.

(n)? = m)(n—=1)....Mm)n-1)...(1) = [(MD)][(n - D@)]... [2)(n - D] [(n)(D)]
Each term (k + 1)(n — k) is greater than n. Therefore
()2 >n" = (n))1/n) > Vn

Thus

. N\ ( > _
/) 2 i i = oo

]

(Exercise V.14.1)
(a) We apply the ratio test to find the radius of convergence for >~ fl—z The following
limit exists, so R = 1.

I n’
m (———




. . n! . .
(c) Consider the series " | —~. We can rewrite it as

izm +Z2+03+04+05+Z6+ f: "
— =+ — z z z —+ ... = an?
n:ln 2 3 n=1
where

% dk € N,n = k!

Gy, =

0 VkeN,n#k!

Then

|an|

e JBY Sk eNn =k
0 Vi € N,n # k!

Then using the above lemma we can compute

1/n

1\ (/KD
lim sup |a,|"/™ = lim sup (—) =1
n—00 k—o0 k

Then by the Cauchy-Hadamard theorem, the radius of convergence is the reciprocal of this
limsup, so R = 1.
(d) Consider the series Yo7 (n!)z™. Then we have

{n! Ik eN,n =k
a, = = |ay|

\n V" 3k eNn =kl
0 VkeN,n#kl B

0 Vk € Nyn # k!
Using the calculation from a previous lemma,

lim sup |a,|"™ = limsup(n!)/" = oo

so the radius of convergence is zero.
. . 2 o . . .
(e) Consider the series ">, n"z"". Then aft9er rewriting it to include zero terms,

Znnz”2 =12 4+ 0224022 + 92,2 +025+ ...+ 33,3 4.
n=1

we can formulate the nth term of this series as

o JF weNR=n_ V¥ 3k eN K2 =n
" 10 VEeN k2 #n 0 Vke N, k> #n

Then we take the lim sup

7\ L/n
lim sup |a,|*™ = lim sup <\/ﬁ\f> = lim sup n'/@v?

n—0o0 n—0o0 n—o0



We can compute this as a limit:

1
lim n"/®v? = exp lim log /v — exp lim oen
-1
=exp lim ——= =exp lim n™2 =exp0 =1

n—oo 1N 1/2 n—o0
Thus the radius of convergence is 1.

Proposition 0.14 (Exercise V.16.2). The power series

)
E 7’L22
n=1

represents the function
—z(z+1)

=G

on the unit disk |z| < 1.

Proof. We know that the series Y>> ;2" represents the function z — — on [z| < 1. Takmg

1
1—=z

|z| < 1. Multiplying by z on both 81des of the “equality,” = )2 is represented by » 7 nz"

the termwise derivative tells us that a ( ) = (172)2 is represented by Z -, nz""1 also on

on |z| < 1. Taking another termwise derivative and then multiplying by z again gives that

ag ((1 - z)?) B _(Z(i)?

is represented by > 7 n?z" on |z| < 1. O

Proposition 0.15 (Exercise V.16.3, part one). Let k be a nonnegative integer. Then the

series fio
o0 n
Z -1 ()
n!(n+ k)!
n=
has radius of convergence oo.

Proof. Let b, be the nth term of the above series. Then

((;)’“*2”) (n+1)(n+1+k)

bn+1
bn,

nl(n+k)!

SO
lim but1

n—o0

=0

n

for al z, k. Thus by the ratio test, the series converges absolutely for all z, so the radius of
convergence is infinite. O]



